skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dutta, Oindrilla"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. In this study, a technique for developing a distribution management system (DMS), which possesses the flexibility to take both preventive and corrective actions against thermal overloading of branches in active distribution networks (ADNs), has been demonstrated. An ADN comprises microgrids that consist of photovoltaic and battery energy storage systems (BESSs). The DMS primarily minimizes the hourly cumulative cost incurred by loads due to energy pricing of utility, by effectively dispatching the BESSs. Besides, the DMS regulates BESS state of charge and bus voltages within their limits. It also controls loading of branches by taking corrective measures during overloading or preventive measures during critical loading conditions. This DMS has been designed using a reinforcement learning based technique, namely, adaptive critic design (ACD). This study elaborates the formulation of ACD algorithm so that an effective performance of the controller can be achieved. As case study, a modified IEEE 5‐bus system along with a microgrid and its controllers have been modelled in detail and simulated in real‐time by developing a simulation‐in‐the‐loop testbed using OPAL‐RT and DSpace. This testbed facilitates simulation of the detailed model along with its power electronic components, such that both transient and steady‐state performance of the system can be observed. 
    more » « less